传统的图像/视频压缩旨在以尽可能高的信号保真度降低传输/存储成本。但是,随着近年来对机器分析和语义监测的需求不断增长,语义保真度而不是信号忠诚度正在成为图像/视频压缩中的另一个新兴关注点。随着交叉模态翻译和生成的最新进展,在本文中,我们提出了交叉模态压缩〜(CMC),即视觉数据的语义压缩框架,以转换高冗余的视觉数据〜(例如图像,视频等) 。具体而言,我们首先将CMC问题作为率延伸优化问题。其次,我们研究了与传统图像/视频压缩和最新特征压缩框架的关系,显示了我们的CMC和这些先前的框架之间的差异。然后,我们为CMC提出了一种新颖的范式,以证明其有效性。定性和定量结果表明,我们提出的CMC可以通过超高压缩比实现令人鼓舞的重建结果,比广泛使用的JPEG基线显示出更好的压缩性能。
translated by 谷歌翻译
尽管基于经常性的神经网络(RNN)的视频预测方法已经取得了重大成就,但由于信息损失问题和基于知觉的卑鄙平方错误(MSE)损失功能,它们在具有高分辨率的数据集中的性能仍然远远不令人满意。 。在本文中,我们提出了一个时空信息保存和感知声明模型(STIP),以解决上述两个问题。为了解决信息损失问题,提出的模型旨在在功能提取和状态过渡期间分别保留视频的时空信息。首先,基于X-NET结构设计了多透明时空自动编码器(MGST-AE)。拟议的MGST-AE可以帮助解码器回忆到时间和空间域中编码器的多透明信息。这样,在高分辨率视频的功能提取过程中,可以保留更多时空信息。其次,时空门控复发单元(STGRU)是基于标准的封闭式复发单元(GRU)结构而设计的,该结构可以在状态过渡期间有效地保留时空信息。与流行的长期短期(LSTM)的预测记忆相比,提出的STGRU可以通过计算负载较低的计算负载来实现更令人满意的性能。此外,为了改善传统的MSE损失功能,基于生成的对抗网络(GAN)进一步设计了学识渊博的知觉损失(LP-loss),这可以帮助获得客观质量和感知质量之间的令人满意的权衡。实验结果表明,与各种最先进的方法相比,提出的Stip可以预测具有更令人满意的视觉质量的视频。源代码已在\ url {https://github.com/zhengchang467/stiphr}上获得。
translated by 谷歌翻译
本文介绍了一个新型的预训练的空间时间多对一(p-STMO)模型,用于2D到3D人类姿势估计任务。为了减少捕获空间和时间信息的困难,我们将此任务分为两个阶段:预训练(I期)和微调(II阶段)。在第一阶段,提出了一个自我监督的预训练子任务,称为蒙面姿势建模。输入序列中的人关节在空间和时间域中随机掩盖。利用denoising自动编码器的一般形式以恢复原始的2D姿势,并且编码器能够以这种方式捕获空间和时间依赖性。在第二阶段,将预训练的编码器加载到STMO模型并进行微调。编码器之后是一个多对一的框架聚合器,以预测当前帧中的3D姿势。尤其是,MLP块被用作STMO中的空间特征提取器,其性能比其他方法更好。此外,提出了一种时间下采样策略,以减少数据冗余。在两个基准上进行的广泛实验表明,我们的方法优于较少参数和较少计算开销的最先进方法。例如,我们的P-STMO模型在使用CPN作为输入的2D姿势时,在Human3.6M数据集上达到42.1mm MPJPE。同时,它为最新方法带来了1.5-7.1倍的速度。代码可在https://github.com/patrick-swk/p-stmo上找到。
translated by 谷歌翻译
多芯片芯片模块(MCM),而票面上提供性能和能效的单片大芯片减少了机器学习(ML)加速器的设计和制造成本。然而,统计MCM的ML编译器需要最佳,有效地解决复杂的优化问题,以实现这种高性能。其中一个问题是多芯片分割问题,在编译器确定在小芯片的MCM张计算图形操作的最佳分配和安置。作为搜索空间可用芯片的数目和节点的神经网络在数量呈指数级增长分区ML图形的多芯片模块是特别难。此外,由底层硬件施加的约束产生了一个有效解决方案非常稀疏的搜索空间。在本文中,我们提出使用深强化学习(RL)框架来发出可能无效分区候选人,然后由约束求解修正的策略。使用约束求解器可确保RL遇到稀疏空间中的有效解决方案,其经常足以与未经学习的策略相比较少的样本收敛。我们为策略网络制作的架构选择允许我们拓展不同的ML图形。我们的生产规模的模型,BERT,在真实的硬件的评估表明,使用RL政策所产生的分区达到6.11%和5.85%,比吞吐量随机搜索和模拟退火更高。此外,微调预训练RL政策减少了3小时至只有9分钟的搜索时间,同时实现了相同的吞吐量从头训练RL政策。
translated by 谷歌翻译
Masked image modeling (MIM) performs strongly in pre-training large vision Transformers (ViTs). However, small models that are critical for real-world applications cannot or only marginally benefit from this pre-training approach. In this paper, we explore distillation techniques to transfer the success of large MIM-based pre-trained models to smaller ones. We systematically study different options in the distillation framework, including distilling targets, losses, input, network regularization, sequential distillation, etc, revealing that: 1) Distilling token relations is more effective than CLS token- and feature-based distillation; 2) An intermediate layer of the teacher network as target perform better than that using the last layer when the depth of the student mismatches that of the teacher; 3) Weak regularization is preferred; etc. With these findings, we achieve significant fine-tuning accuracy improvements over the scratch MIM pre-training on ImageNet-1K classification, using all the ViT-Tiny, ViT-Small, and ViT-base models, with +4.2%/+2.4%/+1.4% gains, respectively. Our TinyMIM model of base size achieves 52.2 mIoU in AE20K semantic segmentation, which is +4.1 higher than the MAE baseline. Our TinyMIM model of tiny size achieves 79.6% top-1 accuracy on ImageNet-1K image classification, which sets a new record for small vision models of the same size and computation budget. This strong performance suggests an alternative way for developing small vision Transformer models, that is, by exploring better training methods rather than introducing inductive biases into architectures as in most previous works. Code is available at https://github.com/OliverRensu/TinyMIM.
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
Automatic music generation with artificial intelligence typically requires a large amount of data which is hard to obtain for many less common genres and musical instruments. To tackle this issue, we present ongoing work and preliminary findings on the possibility for deep models to transfer knowledge from language to music, by finetuning large language models pre-trained on a massive text corpus on only hundreds of MIDI files of drum performances. We show that by doing so, one of the largest, state-of-the-art models (GPT3) is capable of generating reasonable drum grooves, while models that are not pre-trained (Transformer) shows no such ability beyond naive repetition. Evaluating generated music is a challenging task, more so is evaluating drum grooves with little precedence in literature. Hence, we propose a tailored structural evaluation method and analyze drum grooves produced by GPT3 compared to those played by human professionals, exposing the strengths and weaknesses of such generation by language-to-music transfer. Our findings suggest that language-to-music transfer learning with large language models is viable and promising.
translated by 谷歌翻译
Few Shot Instance Segmentation (FSIS) requires models to detect and segment novel classes with limited several support examples. In this work, we explore a simple yet unified solution for FSIS as well as its incremental variants, and introduce a new framework named Reference Twice (RefT) to fully explore the relationship between support/query features based on a Transformer-like framework. Our key insights are two folds: Firstly, with the aid of support masks, we can generate dynamic class centers more appropriately to re-weight query features. Secondly, we find that support object queries have already encoded key factors after base training. In this way, the query features can be enhanced twice from two aspects, i.e., feature-level and instance-level. In particular, we firstly design a mask-based dynamic weighting module to enhance support features and then propose to link object queries for better calibration via cross-attention. After the above steps, the novel classes can be improved significantly over our strong baseline. Additionally, our new framework can be easily extended to incremental FSIS with minor modification. When benchmarking results on the COCO dataset for FSIS, gFSIS, and iFSIS settings, our method achieves a competitive performance compared to existing approaches across different shots, e.g., we boost nAP by noticeable +8.2/+9.4 over the current state-of-the-art FSIS method for 10/30-shot. We further demonstrate the superiority of our approach on Few Shot Object Detection. Code and model will be available.
translated by 谷歌翻译